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SUMMARY

The convergence rate of a methodology for solving incompressible flow in general curvilinear co-ordinates
is analyzed. Double-staggered grids (DSGs), each defined by the same boundaries as the physical domain,
are used for discretization. Both grids are MAC quadrilateral meshes with scalar variables (pressure,
temperature, etc.) arranged at the center and the Cartesian velocity components at the middle of the sides
of the mesh cells. The problem was checked against benchmark solutions of natural convection in a
squeezed cavity, heat transfer in concentric horizontal cylindrical annuli, and a hot cylinder in a duct.

Poisson’s pressure-correction equations that arise from the SIMPLE-like procedure are solved by
several methods: successive overrelaxation, symmetric overrelaxation, modified incomplete factorization
preconditioner, conjugate gradient (CG), and CG with preconditioner. A genetic algorithm was developed
to solve problems of numerical optimization of SIMPLE-like calculation time in a space of iteration
numbers and relaxation parameters. The application provides a means of making an unbiased comparison
between the DSGs method and the widely used interpolation method. Furthermore, the convergence
rate was demonstrated by application to the calculation of natural convection heat transfer in concentric
horizontal cylindrical annuli. Calculation times when DSGs were used were 2–10 times shorter than those
achieved by interpolation. With the DSGs method, calculation time increases slightly with increasing
non-orthogonality of the grids, whereas an interpolation method calls for very small iteration parameters
that lead to unacceptable calculation times. Copyright q 2007 John Wiley & Sons, Ltd.
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206 A. SHKLYAR AND A. ARBEL

1. INTRODUCTION

In the previous study [1]we considered in some detail the discretization of the momentum–mass
equations of the incompressible flow in general curvilinear co-ordinates on double-staggered grids
(DSGs), each defined by the same boundaries as the physical domain.

The use of DSG does not restrict the applications of any one of the methods for solving
incompressible flows. In developing new methods or algorithms for general co-ordinates, it is
desirable to retain as many as possible the advantages and, as far as possible, the simplicity
of existing widely used algorithms for Cartesian co-ordinates, e.g. the artificial compressibility
approach [2], the MAC method [3], the pressure projection method [4], and SIMPLE-like methods
[5, 6]. The adopted overall computational procedure in [1] is an extension of the SIMPLE algorithm
[5]. The procedure is iterative to account for the coupling of velocity and pressure and for the non-
linearity in the momentum equations. Application of the methodology was illustrated in relation
to well-known external and internal flow problems: viscous flow over a circular cylinder with
Reynolds numbers ranging from 10 to 40, and lid-driven flow in a cavity with inclined walls.
The DSG method has been developed around the structure of conservation equations in general
co-ordinates. The gradient term of any scalar in general co-ordinates (Figure 1) is

�x =(��−��)/J (1)

A distinguishing feature of the gradient term in general co-ordinates is the existence of two terms.
Cross-derivatives (such as p�, p�) appear in curvilinear co-ordinates and thus couple closely with
the arrangement of the Cartesian velocity components and scalar values as pressure, temperature,
etc. Gradient component or values of variables in curvilinear co-ordinates at n-point of the cell
can be defined as (taking the pressure derivative as an example Figure 1(a))

p1�|n ≈ p1ne− p1nw (2)

Approximation of p1�|n has been the subject of very many studies; throughout this paper, we
will use the term ‘standard interpolation (SI)’ method [7] to mean any interpolation of the scalar
variables. The effect of the arrangement of the velocity and scalar values and of handling with
cross-derivative terms, on the convergence characteristic of Poisson’s equation for pressure in
the pressure projection method, or those of the pressure-correction equation in the SIMPLE-like
methods is discussed below. Harlow and Welch [3] describe a scheme for regular Cartesian meshes,
in which the pressure is located at cell centers but the velocity is distributed over the cell faces
with horizontal velocity components prescribed at vertical faces and vertical velocity components
prescribed at horizontal faces (Figure 1(a)). Faghri et al. [8] and Shyy [9] adopted this type of
staggered grid for a body-fitted co-ordinate system. The scalar variables are located at the arithmetic
center of the four adjacent grids. Both u and U are located at the midpoints of the east and west
faces of the control volume. Both v and V are located at the midpoints of the north and south faces
of the control volume (Figure 1(c)). Since the successive line under-relaxation method was used
to solve the system of finite-difference equations by applying the efficient tri-diagonal equation
solver, the p�, or p�, is dropped. An alternative formulation Shyy et al. [10] too eliminated p�,
or p�.

Vanka et al. [11] located the Cartesian velocity components, densities, and enthalpies at the
intersection of grid lines (grid nodes), and the pressures at the centers of the cells formed by the
grid lines. This staggered mesh system enables convenient computation of pressure gradient terms
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Figure 1. Double set of computational grids: (a) first staggered grid cell; (b) second staggered
grid displacement; (c) second pressure cell displacement; and (d) a grid for which Cartesian and

contravariant velocities are not aligned.

in the momentum equations. Two averaging processes are used to discretize the momentum and
continuity equations: pressures are averaged to obtain gradients for driving velocities and velocities
are averaged to obtain fluxes at the faces of the cell. This averaging process leads to the poorly
convergent ADI procedure, which necessitates use of an additional iteration procedure, because
of the appearance of the second pressure gradient. In the arbitrary Lagrangian–Eulerian method
[12, 13], the Cartesian flow velocity components and pressures are located at the corners and in the
center, respectively, of the cell. This curvilinear ‘half-staggered mesh’ [14] is used for numerical
simulation of unsteady incompressible flow George et al. [15] and Huang [16]. In this study, we
operate with Cartesian components of velocities. At this point mention should be made of another
set of dependent variables and its arrangements. Contravariant velocity components [17–19],
contravariant physical component [20, 21], covariant physical velocity components, contravariant
flux component [22–24], and contravariant volume flux component [25–30] could be chosen as
the dependent variables. The merit of the covariant (physical) velocity component approach is that
is uses a simple form of Poisson’s equation of the pressure correction. In the grid arrangement by
Karki [31], one covariant physical velocity component is stored at each face of the control volume.
The curvature source term arises in the momentum equation because the velocity components do
not have a fixed direction. In the application of this method to calculate a turbulent flow in the
supersonic ejector, Shklyar et al. [32] showed that weak oblique shock waves are well predicted
in a smooth grid, but that the algorithm loses the convergence rate and stability for a non-smooth
grid [33]. The staggered mesh method of Harlow and Welch was generalized to unstructured
(triangular) meshes (e.g. Hall et al. [34], Nicolaides [35]). These ‘dual-mesh’ or ‘covolume’
methods take explicit advantage of the fact that every unstructured tetrahedral or triangular mesh
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208 A. SHKLYAR AND A. ARBEL

(a Delaunay mesh) has an orthogonal or dual mesh associated with it (a Voronoi tessellation). In
a two-dimensional case other means of storage location and grid arrangements lead to the nine-
diagonal pressure equation (or pressure correction). In a three-dimensional case, they lead to the
19-diagonal pressure equation (or pressure correction) and lack diagonal dominance, which may
cause convergence difficulties. Perić [36] studied the property of the pressure correction equation
in a non-orthogonal system and found, for two-dimensional cavity flows, that if the grid were
significantly non-orthogonal, the simplified (averaging process) pressure-correction equation did not
converge at all or the convergence rate was too small. Cho et al. [37] proposed a decomposition of
the non-orthogonal parts in the full pressure-correction equation, in order to ensure the convergence
of numerical solutions in a strongly non-orthogonal grid. AlsoWang and Komori [38, 39] concluded
that the treatment of the cross-derivatives in the pressure-correction equation had a quite important
influence on the convergence rate in computing fluid flows on strongly non-orthogonal grids. All
the arrangement of the scalar variables and velocity vector for the general co-ordinates covered in
the above brief review share a common property: numbers of momentum and continuity equations
in the discretized forms match the initial numbers of momentum and continuity equations. This is
accomplished by eliminating the ‘inconvenient’ terms, interpolating them or expanding them by
means of Taylor series, etc.

Maliska and Raithby [40] developed an algorithm with two sets of discretized momentum
equations, which may be thought of as splitting discretized equations, but with a common pressure
(pressure-correction) equation. Both the Cartesian velocity components were stored coincidentally
at the middle of the cell faces and pressure was stored at the center of the staggered grid cell
(Figure 1(b)). It was demonstrated that the grid layout dictated the number of points involved in the
pressure equations and, importantly, it was responsible for the type of linkage between the pressure
at a central point and its neighboring pressures. The one Poisson pressure equation involves nine
points and two momentum equations must be solved. The advantage of the method lies in the
tight coupling between the velocity and the pressure fields, which leads to rapid convergence of
the equation set.

Shklyar and Arbel [1] had inputted additional momentum equation and continuity in DSGs
(variables marked with superscript 2 in Figure 1) and developed an algorithm with a system of
paired sets of discretized equation system, each with two momentum and one pressure correction.
The DSG method can be viewed as one of the problem-solving tools for approximating ‘cross-
diffusion’ terms in general curvilinear co-ordinates (p�, p� etc.). In terms of DSG (Figure 1(c)),
Equation (2) may be rewritten as

p1�|n ≈(p21,2− p22,2)

The problem of the influence of the (p�, p�) and its approximation have been a focus of attention
during two decades of the creation of effective algorithms in a general curvilinear co-ordinates;
Lehnhäuser and Schäfer [41] used an approximation of the pressure derivatives based on a
multi-dimensional Taylor expansion; their paper includes examples of pressure-correction equation
problems.

The objective of the present study was to make a numerical comparison between the convergence
rates of the DSG method and of the SI method.

This paper is organized as follows. In Section 2 we begin with a brief description of the treatment
of physical domain discretization on DSGs. In Section 3, the DSG methodology is checked against
natural convection of the benchmark numerical solutions and experimental results for heat transfer
in annuli. In Section 4, the performance of the DSG is illustrated by application to the well-known
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problem of natural convection heat transfer in concentric and eccentric horizontal cylindrical annuli
by means of orthogonal and non-orthogonal grids.

2. PHYSICAL DOMAIN DISCRETIZATION

With regard to the DSG method, the reader may find in [1] the treatment of physical domain
discretization with evaluation of metrics, discretization continuity and momentum equations, pres-
sure boundary conditions, velocity–pressure linkage, which lead to generalization of the SIMPLE
procedure for external and internal problems.

To facilitate the derivation of the finite-difference formulation, the solution domain in the x
and y co-ordinate system is first discretized. Thus, we want to use the staggered grid technique,
which offers conservation of mass, momentum, and kinetic energy naturally, and which avoids the
decoupling of odd–even points.

Two grids are used to discretize the physical domain. For the first grid, a MAC-staggered grid
system is adopted, as shown in Figure 1(a). A grid system is generated numerically or algebraically
at the positions marked by filled circles. The pressure (or any one of the scalar variables, e.g.
temperature, etc.) is arranged at the arithmetic center of these four circles. The numerical notation
of the p1 is designed so that indexes 1,1 belong to the left bottom mesh of the domain. p1i,0 lies at
the bottom and belongs to the left boundary. The Cartesian velocity components are located at the
midpoints of the e and w faces of the control volume. The Cartesian velocity components u1i+1, j

and u1i, j are located at the midpoints of the s and n faces of the control volume. A typical grid
node, P, is enclosed in its cell and is surrounded by its neighbors N, S, E, and W. The second grid
(Figure 1(b)) is displaced so that the center of its mesh coincides with the corner of that of the first
mesh grid (shaded area) and its corners correspond to the center of the first grid. The pressure p2i, j
in the second grid is placed at the corner of the first mesh. Note that for convenience in numerical
coding and for the relationship between first and second grid indexes, fractional indexes are not
used in notations, e.g. p21,1 belong to the left bottom corner and p22,2 to the diagonally opposite

corner of the first grid mesh (Figure 1(c)). The Cartesian velocity components u2i, j and u2i, j+1 are
located at the midpoints of the s and n faces of the first grid control volume, and the Cartesian
velocity components v2i+1, j and v2i, j are located at the midpoints of the e and w faces of the first
grid control volume. Thus, two sets of the primitive variables define the physical domain—indexes
of the first velocity component u1 coincide with those of the second velocity component v2, and
this also applies to u2 and v1. This type of domain discretization (DSG) can be regarded as overset
grids, either of which occupies the overall numerical domain.

3. VALIDATION

Application of the DSG methodology developed in [1] was demonstrated by the calculation
of the external and internal problems. For the sake of brevity, in this present paper we omit
the mathematical treatment of the DSG method as applied to natural convection problems; we
considered the convergence rate of a DSG method. The use of the methodology will be illustrated
in Section 3.1 by means of numerical comparison with a benchmark solution that includes internal
buoyancy-driven flow in a squeezed cavity, and heat transfer from a cylinder enclosed in a square
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Figure 2. Squeezed cavity test case: (a) geometry and boundary conditions and
(b) example of a coarse uniform grid.

duct (Section 3.2), and in Section 3.3 comparison is made with experimental studies of heat
transfer between concentric and eccentric cylinders. The double-staggered algorithm was tested
with double precision on a Pentium� 4 CPU 3GHz computer. The pattern of the streamlines was
calculated from the vorticity-stream function formulation of one of the momentum equations (see
Reference [42]):

��+�=0

or for grid type at Figure 2(b):

C1���+C3���−2C2���+x�u�+ y�v�−u� =0 (3)

The double-grid arrangement was also applied to Equation (3); Neumann conditions �1
�|�=0,1=

�1
�|�=0,1=0 were set for the first grid function, �1, and wall boundary conditions were set to

zero for the second grid function, �2.
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3.1. Flow in the squeezed cavity

The control test case involved buoyancy-driven cavity flows. Appropriate benchmark solutions were
described by Demirdžić et al. [43]. Non-orthogonal grids were set up by inclining the sidewalls or
by squeezing the cavity (Figure 2(a)). The inclined walls were kept at constant temperatures Th and
Tc, respectively; the horizontal walls were assumed to be adiabatic, and the inclination angle � was
set to 45◦. The dimensions and fluid properties used were L=1, density �=1, gravity constant
g=1, expansion coefficient �=0.1, specific heat Cp =1, Th =1, and Tc=0, so that the Rayleigh
number was a function only of the viscosity and the Prandtl number. Flows at Ra=106 were
studied for two values of the Prandtl number: Pr=0.1 and 10. Non-uniform grids, symmetrically
expanding toward the centerline from all walls, were implied by Demirdžić et al. [43], e.g. on
the finest grid, with 224×192 control volumes; the smallest x and y amounting to 1

467 and 1
454 ,

respectively.
Uniform grids ranging from 480×480 to 512×512 are used for testing double-staggered algo-

rithms. For the type of grid shown in Figure 2(b), x� =1, y� =0, x� =cos�, and y� =sin�. Boundary
conditions are v=u=0 at the walls. Central differences are used to approximate both convection
and diffusion fluxes. In the momentum equations, values of the pressure at the boundary nodes are
required, in order to evaluate the pressure gradient. Linear extrapolation from interior values of
the pressure was used to provide a benchmark solution. The presented algorithm and the squeezed
cavity benchmark solutions were compared by linear extrapolation from interior values, e.g. at the
bottom wall:

p1i,0= p1i,1−0.5
�p1i,1
��

�� (4)

where p1� is calculated as the non-centered second-order derivative. p2 at the walls is computed as

the average of p1; this method of calculating the wall pressure p1 was used only for comparison
purposes in this test case. In other cases, the wall pressure would be determined by means of
the momentum equation. Figure 3 shows excellent agreement with benchmark solutions [42].
Isotherms and streamlines predicted on the 512×512 grids for flow case �=45◦ are presented in
Figures 4 and 5, respectively. They show all the typical features of such flow [42]. Minimum and
maximum stream function values in vortex centers and their positions as predicted on the 512×512
grid are presented in Table I. Small quantitative differences were found in the displacement of the
maximum stream function values of the vortexes and their intensities.

3.2. Cylinder in a square duct

Solution of the heat transfer from a cylinder, enclosed in a square duct, was a second benchmark
solution (Figure 6(a)). The vertical walls of the duct were kept at temperature Tc=0; the horizontal
walls were adiabatic. The cylinder axis was displaced vertically from the duct center line for
�yc=0.1; the cylinder radius was R=0.2, and the duct dimensions were L=1. The fluid properties
were the same as in the squeezed cavity case. The boundary-fitted physical co-ordinate system
was created by numerically solving the following system of elliptic equations:

( f x�)�+( f x�)� =0

( f y�)�+( f y�)� =0
(5)
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Figure 3. Profile of the local Nusselt number along the cold wall for �=45◦; present study: -, Pr=10.0;
−·−, Pr=0.1; Demirdžić et al. [43]: +, Pr=10.0; �, Pr=0.1.
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Figure 4. Predicted isotherms for �=45◦: (a) Pr=10.0 and (b) Pr=0.1.

where f =g1/222 g1/211 . Equations (5) was used for smoothing the guessed values of x and y, by
iteration. An example of this procedure (32×32 grid) is presented in Figure 6(b). Non-orthogonal
grids ranging from 256×128 to 512×256 were developed for testing double-staggered algorithms.
The pressure boundary conditions were obtained from the differential form of the momentum
equation (for the grid type shown in Figure 6(b)) at the left and right sides of the computational

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:205–236
DOI: 10.1002/fld



ACCELERATED CONVERGENCE OF THE NUMERICAL SIMULATION 213

A  –0.149E-3
B  –0.299E-3
C  –0.449E-3
D  –0.599E-3
E  –0.749E-3
F  –0.899E-3

G  –0.104E-2
H  –0.119E-2
I  –0.134E-2
J  –0.149E-2
K -0.158E-2
L -0.164E-2

(a)

A B C DEFGHI
J

K L
L

A B
C

D
E

F
G

H
II

J
K

J
K

(b)

A  –0.099E-2
B  –0.199E-2
C  –0.299E-2
D  –0.399E-2
E  –0.499E-2
F  –0.599E-2

G   –0.699E-2
H   –0.799E-2
I   –0.874E-2
J   –0.906E-2
K –0.949E-2
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Table I. Characteristic stream function values for squeezed cavity.

Pr=0.1 Pr=10.0

Demirdžić et al. [43] Present study Demirdžić et al. [43] Present study

�min −9.68706×10−1 −9.657881×10−1 −1.662127×10−1 −1.664881×10−1

x 0.78926 0.778861 0.57276 0.572366
y 0.178134 0.176777 0.319989 0.318199
�max 7.705×10−8 2.59398×10−6 — —
x 1.271738 0.401979 — —
y 0.702687 0.010312 — —

domain (�=0,1):

p� = (C1u��x�+C2u��x�+C1v��y�+C2v��y�)
Pr

J

−(Uu)�
x�

J
−(Vu)�−(V v)�

y�
J

+RaPrT
y�
J

(6)

At these sides p� is used for calculations of p1 and p� for calculating p2 along these walls:

p� = (C2u��x�+C1v��y�+C2v��y�)
Pr

J

−(Uu)�
x�

J
−(Uu)�−(V v)�

y�
J

+RaPrT
y�
J

(7)
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of coarse non-orthogonal grid (32×32).

At the top and bottom walls (�=0,1):

p� = (C3u��x�+C2u��x�+C3v��y�+C2v��y�)
Pr

J

−(Vu)�
x�

J
−(V v)�

y�
J

+RaPrT
y�
J

(8)

At these sides, p� is used for calculating p1 and p� for calculating p2 along �:

p� = (C3u��x�+C2u��x�+C3v��y�+C2v��y�)
Pr

J

−(Vu)�
x�

J
−(V v)�

y�
J

+RaPrT
y�
J

(9)

Pressures at the walls are calculated accordingly, e.g. with Equation (4); p2 at the walls is computed
as the average of p1; in contrast to the previous comparison with a benchmark solution for the
squeezed cavity, in which the boundary pressure value is extrapolated from the interior points. In
the case of the duct, we evaluate the pressure boundary conditions for p2 from the projection of
the momentum equation for the first set of variables. This procedure is similar to that used in the
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Figure 8. Profile of the local Nusselt number: (a) along the cold wall of the duct and (b) along the
cylinder; present study: -, Pr=10.0; – · –, Pr=0.1; Demirdžić et al. [43]: +, Pr=10.0; �, Pr=0.1.

problem of the incompressible flow simulation with Neumann boundary conditions [44–47]. This
algorithm requires holding the compatibility relationship:∫ ∫

�
∇2 pd�=

∮
�
pn d� (10)

in which � denotes a two-dimensional region, with � as its boundary.
Failure to satisfy the discrete form of Equation (10) causes either very slow convergence or

even divergence of the solution. Although we do not explicitly use Neumann conditions for the
second pressure, in light of our experience, low approximation of the first momentum projection
may lead to divergence of the solution. Figure 7 illustrates a residual and pressure convergence
history for a 256×128 grid, where ‖Residual‖ is a vector norm of the mass flux through cells:

‖Residual‖=∑
i

|Residuali |
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Table II. Characteristic stream function values for the duct.

Pr=0.1 Pr=10.0

Demirdžić et al. [43] Present study Demirdžić et al. [43] Present study

�min −8.78350×10−5 −3.88110×10−4 — —
x 0.46453 0.46692 — —
y 0.05430 0.04820 — —
�max 1.212974×10−2 1.211576×10−6 1.419586×10−3 1.36635×10−3

x 0.27188 0.276922 0.149187 0.133653
y 0.24593 0.19981 0.668196 0.665032

Figure 8 shows good agreement of a local Nusselt number with the benchmark solutions [43].
Streamlines such as those predicted for the 512×512 grids for the flow case of �=45◦ are presented
in Figure 9; they show typical features of such flow. Minimum and maximum stream function
values in vortex centers and their positions as predicted on the 512×512 grid are presented in
Table II.

We used another boundary approximation of the pressure and found small quantitative differences
in the displacement of the maximum stream function values of the vortices and their intensities.

3.3. Natural convection in a cylindrical annulus

This problem concerns natural convection in the space between horizontal concentric cylinders
(Figure 10). A comprehensive review of the relevant literature on the concentric annulus was
given by Kuehn and Goldstein [48], who also studied the flow in the annulus between horizontal
eccentric cylinders with a hot inner cylinder, by means of Mach–Zehnder techniques [49]. Guj
et al. [50] analyzed the thermal field in horizontally eccentric cylinders, with a 32×32 grid; their
treatment of the vertically eccentric problem included a demonstration that despite the cylindrical
geometry of this problem, the solution was obtained in the Cartesian co-ordinate system. In other
treatments, Kuehn and Goldstein [48] used a 16×19 grid, Farouk and Guceri [51] used a 24×50
grid, Cho et al. [52] and Projahn et al. [53] used 30×40 grids, and Shu et al. [54] used a vorticity-
stream function formulation with a 31×21 grid. Primitive variable formulations were used by Date
[55] and Guj and Stella [56]. Natural convection in annuli was widely used as test problems by
Karki and Patankar [57], with a 32×32 grid and Choi et al. [58] with a 24×32 grid, as well as
Kobayashi and Pereira [59], Ray and Date [60], and Galpin and Raithby [61] among others. The
boundary conditions imposed in the present problem were two impermeable isothermal walls at
constant radii and two vertical lines of symmetry at the upper and lower sides (Figure 10(a)). The
flow was laminar, with non-slip conditions at the cylinder surfaces, and the temperatures of both
cylinders were constant. The inner cylinder was heated (Th =1) and the outer one cooled (Tc=0).
Because of the symmetry with respect to the vertical centerline, only one half of the total annulus
needs to be considered in the numerical analysis. Thus, at the centerline

u=0, v� =0, T� =0

The calculations for the eccentric geometry (ev=0.652) were repeated with a grid system covering
the whole region of flow, to demonstrate that symmetry conditions do not influence the numerical
results. The double-grid setting procedure for natural convection problems is demonstrated on the
orthogonal and non-orthogonal grids. The two-boundary technique of grid generation was used
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Figure 9. Predicted isotherms (a) and streamlines (b) for duct at Pr=10.0; and isotherms
(c) and streamlines (d) for duct at Pr=0.1.

to build a non-orthogonal curvilinear grid in physical space. Simple interpolation of the interior
between the two boundaries was provided by

x(�,�) = (1−s)xAB(qAB)+sxDC (qDC )

y(�,�) = (1−s)yAB(qAB)+syDC (qDC )
(11)
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Figure 10. Geometry and meshing of an annulus (an example of a 32×32) mesh system: (a) eccen-
tric annulus geometry; (b) non-orthogonal co-ordinates (ev=−0.623); (c) polar orthogonal co-ordinates

(ev=0); and (d) bipolar orthogonal co-ordinates (ev=−0.623).

in which s and q are stretching functions, and AB andDC are boundary curves. Figure 10(b) presents
an example of the non-orthogonal grid with the same stretching functions q and s (P=2.5):

s=1+ tanh(P(�−0.5))/ tanh(P/2)/2 (12)

Two types of orthogonal grid were used for calculations—polar co-ordinates as in the case
ev=0 and bipolar co-ordinates for ev=0.652, −0.623 (Figures 10(c) and (d)). The local equivalent
thermal conductivities keq for various eccentricities were compared with experimental data [48, 49].
The local equivalent thermal conductivity keq is defined as the ratio between the actual Nu and the
Nucond, where Nucond is the Nusselt number for pure conduction in the concentric case:

keq,i (�) = �T/�n|Ri ,�
(Th−Tc)

Ri ln
Ro

Ri

keq,o(�) = �T/�n|Ro,�

(Th−Tc)
Ri ln

Ro

Ri

(13)

For a concentric configuration (ev=0) (Figure 10(a)), following Kuehn’s and Goldstein’s [48]
experiment, the Rayleigh number is taken as 4.7×104 and Pr=0.706. Numerical procedures
were studied on the non-orthogonal 256×128 grid (Figure 10(b)) and on two orthogonal grids:
−256×128 and 512×256.

Table III presents the results of calculations of the keq,i on different grids. Power-law and central
differences were used to approximate mass flux. The cell aspect ratio of the non-orthogonal grid
reached 17.88, and the procedure lost stability in the central differences treatment. Table III also
presents the good coincidence between the results obtained with the non-orthogonal and orthogonal
grid with power-law treatment, and those obtained with central differences with 256×128 and
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Table III. Monitored keq,i values as predicted on various grids for Ra=4.7×10−4, ev=0.

256×128 256×128 256×128 512×256

Power-law, Power-law, Central Central
� non-orthogonal orthogonal orthogonal orthogonal

0 0.6564 0.6569 0.6208 0.6199
15 1.1417 1.1412 1.1128 1.1118
30 1.7637 1.7616 1.7602 1.7587
45 2.2316 2.2267 2.2435 2.2429
60 2.5774 2.5716 2.5929 2.5938
75 2.8850 2.8793 2.8996 2.9012
90 3.2070 3.2046 3.2239 3.2248

105 3.5617 3.5635 3.5821 3.5818
120 3.8548 3.8632 3.8708 3.8697
135 3.9242 3.9344 3.9163 3.9150
150 3.8404 3.8465 3.8125 3.8106
165 3.8110 3.8156 3.7844 3.7820
180 3.8224 3.8270 3.7984 3.7956

0 20 40 60 80 100 120 140 160 180
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10

12

θ

k e
q

Figure 11. Comparison of concentric local heat transfer coefficients: Ra=4.7×10−4, ev=0: –, central
differencing approximation and - -, power-law approximation, present calculation; �, inner cylinder and

�, outer cylinder, experimental data [49].

512×256 grids. The local equivalent thermal conductivities are compared with the experimental
data of Kuehn and Goldstein [49] in Figure 11. The results show good agreement.

Cho et al. [52], who used governing equations of the stream function, vorticity, and temperature
in the cylindrical bipolar co-ordinate system on a 51×31 grid, also obtained under-prediction of the
local equivalent thermal conductivities at �=180◦. Our calculations with 512×256 and 256×128
grids generated the same results. Figure 12 shows the calculated isotherms and the streamlines.
Table IV presents the min and max values calculated on the 256×128 grid, together with the vortex
center co-ordinates. The second vortex is always weaker.
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Figure 12. Streamlines and isotherms: Ra=4.7×104, Pr=0.706
(ev=−0.623); �=[−1.5×103(6)0.1]; �T =0.1.

Table IV. Minimum and maximum stream function values in
vortex centers and their positions.

ev=0 ev=−0.623 ev=0.652

�min −1.4280×10−3 −1.5714×10−1 −2.6026×10−3

x 0.27009 0.69181 0.16124
y 0.59300 2.4528 3.0697
�max 9.7753×10−2 4.1808×10−3 6.4078×10−2

x 0.67562 0.26377 1.1490
y 0.96701 2.1188 2.1681

4. CONVERGENCE PROPERTIES

In this section, the convergence properties of the DGG method are compared with the widely used
‘SI’ method in treating the problem of natural convection in annuli. A variety of iteration algorithms
were used for solving Poisson’s equation for pressure correction: the successive overrelaxation
(SOR) method (Section 4.1), the symmetric overrelaxation (SSOR) method (Section 4.2), the
incomplete factorization preconditioner method (Section 4.3), the conjugate gradient (CG) method
(Section 4.4), and the CG methods with preconditioner (Section 4.5), and the SOR method are
applied to non-orthogonal grids (Section 4.6).

Orthogonal and non-orthogonal grids were used in the above-described numerical simulations
of the flow in annuli. The main advantages of the orthogonal grid are ‘disappearance’ of cross-
derivatives (such as u�, u�, T�, and T�) and that Poisson’s equation of the pressure correction
contains only derivatives of the pressures correction p1

′
� , p1

′
� or p2

′
� , and p2

′
� ; also in this case,

the formulation of natural variables in Cartesian co-ordinates requires a pressure gradient calcu-
lation along every curvilinear co-ordinate. Thus, it seems, in accordance with Figure 1, that one
set of momentum–mass–energy equations may be used for calculations of u1, v1, p1, and T1
and gradients must be interpolated from the calculated pressure distribution. We showed that an
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additional calculation of the second set of momentum–mass–energy equations leads to accelerated
convergence of the problem.

Linearization of every set of momentum–mass–energy equations by SIMPLE or a similar method
(SIMPLER, SIMPLEC, etc.) gives rise to two systems for velocity components (u, v), and Poisson’s
equation for pressure and temperature. This iteration method inputs relaxation parameter for the
momentum equation and an external pressure iteration parameter. In the DSG method, we also
use common parameters for every type of two sets of the momentum–mass–energy equations [1]:
in our notations, 	p1 is the first external pressure iteration parameter, 	p2 is the second external
pressure iteration parameter, 	u1 is the first velocity iteration parameter, and 	u2 is the second
velocity iteration parameter.

In the following discussion, we use a general notation for linear systems. Iteration methods can
be used to give solutions for every linear system:

Au=b (14)

Here A is a symmetric positive-definite matrix, b is a right-hand side vector, and u is a vector of
unknowns. The linear stationary method for (14) may be expressed in the form:

un+1=Gun+k (15)

Matrix A is decomposed in the form:

A=D−E−F (16)

where D is a diagonal of A, −E its strict lower part, and −F its the strict upper part. The choice
of an effective iterative solution method of a linearized momentum–mass–energy system depends
heavily on the set of iteration parameters (the number of iteration parameters is 20 for methods
such as GAUSS–ZEIDEL, SOR, SSOR, TDM, etc.). These parameters are (i=1 indicates a first
system, i=2 indicates a second system) Npi—internal iteration number of Poisson’s pressure-
correction equation; Nui—iteration number of ui velocity component equation; NT i—iteration
number of temperature equations; 	pi—external pressure, and 	ui—velocity iteration parameters
mentioned earlier; and relaxation parameters, whose number depends on the method of solution
of the equation, e.g. �T i—temperature relaxation factor; and �pi—internal pressure relaxation
factor.

Iteration numbers and relaxation factors are generally chosen on the basis of numerical exper-
iments or published recommendations. We developed a genetic algorithm (GA) which searches
for a global minimum calculation time in a space of iteration numbers and relaxation factors and
which provides a means for unbiased comparison of DSG and SI methods. Unfortunately, a GA
takes too long to search for a global minimum (calculation time and number of external iterations)
for a grid of more than 32 000 elements (256×128) and thus, to make an estimate of a number
iteration and relaxation parameters for general cases, with GA we will first look more closely at
the convergence properties of first and second pressure Poisson equations. Some linkages between
iteration parameters were obtained by preliminary numerical experiments. Iteration numbers of
linearized momentum equations such as Nu1 , Nv1 , Nu2 , and Nv2 were found to be 1 for both DSG
and SI methods. Velocity components relaxation factors and external pressure relaxation factors are
established at less than or equal to one. In this study, we used a combination of iteration methods:
the SOR method, the SSOR method, the incomplete factorization preconditioner (MILU0) method,
the CG method, and CG methods with preconditioner—CG-SSOR and CG-MILU0. We use the
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SIMPLE-like method [1], but for convenience, the name of the solution method of the set of linear
discretization equations was chosen to be the same as the name of the method of the solution of
Poisson’s equation for pressure-correction equations. The same combination of iterative methods
is used when the convergence properties of the DSG method are compared with those of the SI
method, for example, if the first pressure Poisson’s equation is solved by the CG method and
momentum and energy by the SOR method same methods for the same equations are used in a
DSG method.

4.1. SOR method

The SOR method, as applied to calculations on the DSG, enables the estimation of a priori pressure
relaxation factors, �p, and iteration numbers for first and second pressure-correction equations. It
is possible to choose �p, designated as �pb , so that the SOR method converges rapidly—more
rapidly than the Gauss–Zeidel method, for example. A rough approximation to the number of
iterations Np needed to reduce the norm of the initial error vector by a factor 
 can be given by

Np =−(log
)/R∞(L�) (17)

where R∞(L�) is the asymptotic rate of convergence and defined as

R∞(L�)=− logS(L�) (18)

in which S is a spectral radius of the matrix L�, and log x denotes the logarithm of x to the base e.
The SOR method can be expressed in the form:

un+1=L�u
n+k (19)

in which the matrix L� is the SOR iteration matrix [62]:
L� =(I −�L)−1(�U+(1−�)I ) (20)

and

L≡D−1, U ≡D−1E (21)

The optimum value of �pb is given by

�pb= 2

1+√1−M(B)2
(22)

where M is the algebraically largest eigenvalue of B; B is the Jacobi iteration matrix [62]:
B= I −D−1A (23)

The corresponding spectral radius of L� is equal to �pb−1. Table V presents the spectral radii
of the Jacobian iteration matrix of the pressure-correction equations, as computed by the power
method [63] and the number of iterations required to reduce the error for the factor 
=−1. This
and other similar tables that compare spectral properties of first and second Poisson equations
for pressure correction may be used for the estimation of the iteration parameters. In such a
manner, the relationship Np1 :Np2 =8 (Table V) is suitable for approximately minimizing the
overall calculation time on the DSG by the SOR method, as Np is the number of iterations
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Table V. Spectral radii S and numbers of iterations, Np of Poisson’s
pressure-correction equations solved by the SOR method on the DSG.

S1 S2 Np1 Np2

64×32 0.9795 0.8542 48 6
128×64 0.9874 0.9190 78 11
256×128 0.9937 0.9533 157 20
512×256 0.9969 0.9695 292 32

determined from the asymptotic rate of convergence. Just as a numerical solution on a 512×256
grid converges at Np1 =292 and Np2 =32, approximately the same overall calculation time was
obtained at Np1 =150 and Np2 =20. In the DSG method two Poisson equations for pressure
correction are solved: the first pressure correction calculated on an N1×N2 grid is a problem
with Neumann boundary conditions and the second equation calculated on an N1+1×N2+1 grid
is a Dirichlet problem, whose boundary conditions are obtained from the solution of the first
pressure-correction equation. Values of Np1 and Np2 differ considerably for these two problems.
Temperature equations for both the DSG and the SI methods were calculated by the SOR and
the MILU(0) iteration procedures; the SOR method was used in two variants with NT 1 =NT 2 =1,
and with values of NT 1 and NT 2 calculated by GA. Three iteration procedures are used for the
temperature equation (Table VI): upper index 1—the SOR method, NT =1; upper index 2—the
SOR method, NT =var; and upper index 3—the MILU(0) method. Calculations by the DSG and
SI methods, presented in the Table VI for 64×32 and 128×64 grids, indicated that in the DSG
method the SOR relaxation parameter is always greater than 1.0. In the SI method these parameters
are greater than 1.0 only for factor 
�−4, but the condition 
�−7 leads to an optimum value at
	p�1 and the optimum value diminishes sharply as the meshing increases. The value of the 	p of
DSG lies in the range from 0.722 to 1.096 and depends weakly on the meshing. Related results for
high values of the 	p were obtained by Vuik et al. [64] with the Krylov’s accelerated SIMPLE(R)
method. At the same time, 	p is strongly controlled by meshing in the SI method. Thus, from
Table VI it can be seen that the SOR iterative procedure is the best suited to temperature equations.

Table IX shows results of GA solutions to both DSG and SI methods. With the constraint
‖Residual‖�10−7, for the external iteration number of the SOR method (the iteration number of
the SIMPLE method) is about 14 times greater and the computing time is about 7 times longer
than that for the DSG method for a 64×32 grid, and the corresponding values of these parameters
are 20 and 10 for a 128×64 grid. Comparison results were not obtained for finer grids, because
the calculation time of the DSG method increases with increasing domain meshing, whereas
an interpolation method calls for very small iteration parameters that lead to unacceptably long
calculation times. The SOR calculation time of the solution of the first Poisson equation for pressure
correction amounts to one-sixth of the general calculation time of the iteration procedure; that for
the second Poisson equation amounts to only one-fiftieth of the general time. This time distribution
is approximately the same as that in other iterative methods of solving of Poisson’s equations in
DSG. This finding supports the view that the DSG method enables external iterations into SIMPLE-
like methods with higher values of iteration parameters in general co-ordinates and thereby leads
to faster convergence than the SI method. The value of the relationship Np1 :Np2 calculated by
the GA (Table V) is less than would be expected from an asymptotic rate of convergence, but
nevertheless, the number of iterations for the second Poisson pressure equation is less than that for
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Table VI. Optimal iteration parameters of the DSG and SI methods with the SOR iterating procedure for
Poisson’s pressure-correction equations.

t Np1 Np2 Nt1 Nt2 �b1 �b2 	v 	p

64×32 cells; ‖Residual‖�10−4

DSG1 12 19 48 1 1 1.853 1.806 0.605 0.782
DSG2 7 32 23 10 2 1.604 1.915 0.875 0.722
DSG3 9 55 16 11 4 1.909 1.901 0.668 1.096
SI1 24 64 — 16 — 1.283 — 0.247 0.093
SI2 23 48 — 4 — 1.413 — 0.291 0.077

64×32 cells; ‖Residual‖�10−7

DSG1 30 20 4 1 1 1.790 1.802 0.571 0.965
DSG2 24 30 12 2 2 1.726 1.610 0.785 1.033
DSG3 40 23 16 1 7 0.8542 1.782 0.800 0.860
SI1 224 5 — 1 — 0.8542 — 0.454 0.501
SI2 180 6 — 2 — 0.8542 — 0.079 0.583

128×64 cells; ‖Residual‖�10−4

DSG2 45 45 29 11 11 1.875 1.826 0.920 0.788
DSG3 50 29 22 6 1.911 1.911 1.859 0.903 0.731
SI1 200 98 — 3 — 0.992 — 0.426 0.031

128×64 cells; ‖Residual‖�10−7

DSG2 231 33 15 2 5 1.973 1.840 0.954 0.622

the first. Thus, the convergence properties of the DSG method depend not only on the properties
of the pressure-correction equation but also on the external iterative method. Figure 13 shows
the convergence history of the SIMPLE method, in which all the Poisson equations (pressure
corrections and temperatures) are calculated by the SOR iterative procedure. The GA provides
curves of convergence history without fluctuations in this figure, and similar convergence histories
are obtained by the DSG method.

4.2. The SSOR method

In the SSOR method the linear system associated with Poisson’s pressure-correction equation is
solved twice at each internal iteration: first, un+1/2 is computed by means of the SOR method,
then un−1/2 is computed by means of the backward SOR method. If the spectral radius of the
matrix LU satisfies

S(LU)�0.25 (24)

then a good value of �pb is given by [62]

�pb= 2

1+√
2(1−M(B))
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Figure 13. Convergence history of the SIMPLE method with the SOR iteration process: - 64×32 cells,
DSG; - - 128×64 cells, DSG; -·- 64×32 cells, SI; and -··- 128×64 cells, SI.

Table VII. Spectral radius of the matrix LU.

Grid S(LU)1 �pb1 S1 Np1 S(LU)2 �pb2 S2 Np2

64×32 0.0934 1.9795 0.9869 96 0.0612 1.8542 0.9243 12
128×64 0.0985 1.9876 0.9938 159 0.1171 1.9186 0.9584 23
256×128 0.1083 1.9909 0.9954 314 0.1324 1.9542 0.9769 41
512×256 0.0774 1.9966 0.9982 583 0.1383 1.9695 0.9846 64

with this �pb the spectral radius S of the satisfies

S�
(
1−

√
1−M(B)

2

)(
1+

√
1−M(B)

2

)

As indicated in Table VII, the SSOR condition (24) is satisfied; therefore, the SSOR method can
be used effectively, although it has been argued that the rate of convergence of the SSOR method
is relatively insensitive to the choice of � (Figure 14). The calculation time strongly depends
from on the �, but the optimal value is 1.8701 and differs from the calculated asymptotic value
(for 128×64 grids and Np1 :Np2 =7.5). A similar result was obtained by Ashcraft and Grmes
[65], the relationship between iteration number and � for the SSOR preconditioning is roughly
linear between �=1 and its optimal value, �; thus, the additional speed of iterating is achieved
at the cost of more iterations. Figure 15 presents the convergence history of the SSOR iterative
procedure.

4.3. MILU preconditioner

The general problem of finding a preconditioner for a linear system (14) is to find a matrix M
(preconditioner) such that M is a good approximation to A. A suitable choice of M can significantly
accelerate the convergence of the method. In particular, Buleev [66], Stone [67], and Dupont
et al. [68] proposed an approximate factorization method for elliptic problems. It is convenient for

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:205–236
DOI: 10.1002/fld



226 A. SHKLYAR AND A. ARBEL

1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00
Relaxation parameter, �

150

175

200

225

250

275

300

T
im

e,
 s

Figure 14. Calculation time vs SSOR relaxation parameter �, 128×64 grid, ‖Residual‖�10−7.
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Figure 15. Convergence history of the SIMPLE method with the SSOR iteration process: - 64×32 cells,
DSG; - - 128×64 cells, DSG; -·- 64×32 cells, SI; and -··- 128×64 cells, SI.

problem (14) to compute an incomplete LD−1U or modified incomplete MLD−1U factorization
of A, where L is the lower triangular, D is the diagonal, and U is the upper triangular. We use
the modified ILU(0) (MILU(0)) preconditioner to a general matrix A due to Gustafsson [69]. The
ratio between the iteration numbers for Poisson’s first and second equations is ≈4 in the MILU(0)
method, in which the first iteration number usually had been estimated to be ≈30. Under the
constraint of ‖Residual‖�10−7, in SI method, the external iteration number and the computing
time are, respectively, about 10 and 20 times larger than their values in the DSG method for 64×32
grids, and for a 128×64 grid the corresponding values of these parameters are about 18 and 8,
respectively (Figure 16).

4.4. The CG

The CG method does not require internal relaxation parameters, and parameter stopping of the
process may be prescribed. The calculated solution norm may be a parameter of the stopping
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Figure 16. Convergence history of the SIMPLE method with the MILU0 iteration process: - 64×32 cells,
DSG; - - 128×64 cells, DSG; -·- 64×32 cells, SI; and -··- 128×64 cells, SI.

process in internal iterations during the CG iteration process. The use of such criteria for the long
external iterations could result in hundreds of iterations at the beginning of the iteration process
and few iterations at the end. In order to estimate the convergence of the CG for one external
iteration, we used a theorem that characterizes the approximation [70]. The approximate solution
obtained from the mth (Npth) step of the CG algorithm is an xm , the exact solution is x0. Then
xm is of the form

‖x0−xm‖A�2

(√
k−1√
k+1

)m

‖x0−xm‖A

and k is a spectral conditions number k=�max/�min. Table VIII presents some spectral properties
of the A iteration matrix and Np1 and Np2 of the pressure-correction equations computed by
the power and inverse power methods [63] for the factor �=−1. The data in Table VIII were
calculated with residual of 10−14, but the solution changed slowly after a few iterations. The
tridiagonal matrix related to Lanczos’s iteration from the coefficients of the CG algorithm was also
used for the approximation of the largest and smallest eigenvalues of A. The largest approximation
value of the eigenvalue �max of Poisson’s first pressure-correction equation was 0.3380 and that
for Poisson’s second equation was 0.3373, although Np1 and Np2 were small (18 and 8); these
values are in good agreement with the corresponding values for a 128×64 grid obtained from
Table VIII. Experimentally it was found that the relationship Np1 :Np2 ≈3 is a suitable basis for a
calculation on the DSG in the CG method for the annulus problem. This relationship, as calculated
by the GS method, is less than the value of the relationship Np1 :Np2 calculated by the SOR
method, and the relationship calculated by a GA for a 128×64 grid was close to the asymptotic
values. Table IX shows that the number of external iterations and computing time are wasted
as a result of using the iterative method used for solving the pressure-correction equations; we
must emphasize that these values were obtained with the SIMPLE method. Nevertheless under the
constraint of ‖Residual‖�10−7 with the SI method the external iteration number and the computing
time are, respectively, about 13 and about 3 times larger than their values with the DSG method
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Table VIII. Spectral properties of Poisson’s pressure-correction equations, as
solved by CG iteration procedure.

Grid �1max k1 Np1 �2max k2 Np2

64×32 1.2306 5.5×103 62 1.2259 5.5×102 19
128×64 0.3741 8.1×103 76 0.3707 9.8×102 26
256×128 0.1094 1.0×104 84 0.1094 1.8×103 35
512×256 0.0275 1.9×104 116 0.0274 2.8×103 44

Table IX. Computational results for natural convection in annulus.

‖Residual‖�10−4 ‖Residual‖�10−7

In Ct(s) Rin Rct In Ct(s) Rin Rct

64×32 grid
SOR 157 7 3.2 2.0 524 24 14.2 7.2
SSOR 159 7 6.2 3.4 400 18 17.0 9.1
MILU0 171 10 4.7 2.2 461 21 19.5 10.0
CG 222 14 4.0 2.3 479 31 13.2 5.1
CG-SSOR 167 8 5.9 3.0 462 22 11.7 5.8
CG-MILU0 177 8 4.1 2.5 556 31 16.6 7.3

128×64 grid
SOR 218 45 5.86 3.42 736 153 20.1 10.5
SSOR 214 44 5.83 2.89 883 167 15.9 8.6
MILU0 256 57 5.25 2.47 830 184 18.5 8.2
CG 265 95 7.18 3.32 1099 307 15.9 5.8
CG-SSOR 271 54 3.09 1.74 887 181 18.3 9.9
CG-MILU0 256 57 3.20 1.65 873 187 16.1 9.4

In is a number of iterations in the DSG method; Ct(s) is a computing time (s); Rin is a relationship between
number of iterations in SI and number of iterations in DSG; Rct is a relationship between computing time in
the SI method and that in DSG.

for 64×32 grids; the corresponding values of these parameters for a 128×64 grid are about 16
and 6, respectively (Figure 17).

4.5. CG with the preconditioner

The spectral conditions k of the matrix A are large (Table VIII); therefore, the convergence with
the CG method is much worse than with the other methods presented in Table IX. The iterative
method with enhanced spectral properties is the CG method with preconditioner. Oliveira and Issa
[71] gave one version of the CG solver with incomplete Cholesky preconditioner, for computations
of buoyancy-driven flows in the rectangular cavity. The number of inner iterations required to
solve the set of linear equations varies according to the specified tolerance for relative decay of
the residuals. The number of internal iterations needed to solve the energy equation was greater
than that for the momentum equations; this is also attributed to the differing types of boundary
conditions for temperature and velocity components. In this study we consider CG with SSOR
and MILU(0) preconditioner.
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Figure 17. Convergence history of the SIMPLE method with the CG iteration process: - 64×32 cells,
DSG; - - 128×64 cells, DSG; -·- 64×32 cells, SI; and -··- 128×64 cells, SI.
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Figure 18. Convergence history of the SIMPLE method with the CG-SSOR iteration process: - 64×32
cells, DSG; - - 128×64 cells, DSG; -·- 64×32 cells, SI; and -··- 128×64 cells, SI.

4.5.1. CG with SSOR preconditioner (CG-SSOR). The SSOR preconditioner is defined as

M=(D−�E)D−1(D−�F)

Spectral conditions number of the matrix M−1A, defined from the tridiagonal matrix related to
Lanczos’s iteration, is ≈900, which is lower than the A spectral conditions number in the CG
method (Table VIII, 128×64 grid). Comparison of the results of the calculations by the CG-SSOR
method presented in Table IX and Figure 18 shows that although the calculation time and number
of iterations needed in this method are less than in the CG method, using of the SSOR method
without acceleration for the pressure-correction equations provides a greater improvement of the
convergence rate of the SIMPLE-like method.
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Figure 19. Convergence history of the SIMPLE method with the CG-MILU0 iteration process: - 64×32
cells, DSG; - - 128×64 cells, DSG; -·- 64×32 cells, SI; and -··- 128×64 cells, SI.

The ratio between the iteration numbers for Poisson’s first and second equations is approxi-
mately 2; the first iteration number usually had been estimated to be ≈10. Under the constraint
‖Residual‖�10−7, for the SI method the external iteration number and the computing time are,
respectively, about 12 and 6 times larger than their values in the DSG method for a 64×32 grid;
the corresponding values of these parameters for a 128×64 grid are about 18 and 10, respectively.

4.5.2. CG with the MILU(0) preconditioner (CG-MILU0). The MILU(0) preconditioner discussed
previously was used with the CG procedure. Spectral conditions number of the matrix M−1A,
defined from the tridiagonal matrix related to Lanczos’s iteration, is ≈237, which is significantly
lower than the spectral conditions number in the CG method (Table VIII, grid 128×64). Results
of the calculation of CG with MILU(0) preconditioner (CG-MILU) are presented in Table IX
and Figure 19. Use of the CG-MILU(0) for solving of the pressure-correction equations offers
no advantages over MILU(0) in terms of the number of external iterations or in calculation
time. Furthermore, under the constraint of ‖Residual‖�10−7, the CG-MILU(0) method with a
64×32 grid is less effective than the MILU(0) method. This highlights the finding that conjugate
acceleration of the SSOR and MILU0 methods for the solution of Poisson’s pressure-correction
equations does not increase the convergence rate the SIMPLE-like method.

Under the constraint of ‖Residual‖�10−7 for the SI method, the external iteration number and
computing time are, respectively, about 16 and 7 times larger than their values with the DSG
method for a 64×32 grid, the corresponding values of these parameters for a 128×64 grid are
about 16 and 9, respectively.

4.6. Non-orthogonal grids

A set of 64×32 grids displaced as shown in Figure 20 was built by using a stretched func-
tion s (Equation (12)), 0�P�0.9; P=1.0 is the orthogonal grid presented in Figure 10(c); under
condition P�0.5 the � co-ordinate crosses an inner cylinder. The SOR method was applied to all
Poisson’s equations in the SIMPLE-like method in a non-orthogonal grid. The calculation time
in the DSG method increased with increasing non-orthogonality (Table X and Figure 21); for
P>0.6 the relaxation parameters 	p and 	u have higher values, but for P�0.6 the calculation time
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(a) (b) (c) (d) (e)

Figure 20. Non-orthogonal grids for natural convection in annuli: (a) P=0.9; (b) P=0.8;
(c) P=0.7; (d) P=0.6; and (e) P=0.5.

Table X. Computational results for natural convection in annuli with a
non-orthogonal 128×64 DSG grids.

P In Ct(s) Np1 Np2 	p 	u

1.0 736 153 58 24 0.923 0.831
0.9 866 176 46 26 0.910 0.836
0.8 903 177 57 14 0.907 0.845
0.7 960 191 46 26 0.870 0.741
0.6 2008 379 32 9 0.508 0.781
0.5 3974 768 57 27 0.328 0.488
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Figure 21. Convergence history of the SIMPLE-like algorithm with the SOR method
with the annular non-orthogonal 128×64 grid in DSG method: -··- P=0.9; -·- P=0.8;

– P=0.7; - - P=0.6; and – -· P=0.5.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:205–236
DOI: 10.1002/fld



232 A. SHKLYAR AND A. ARBEL

increased abruptly and the relaxation parameters 	p and 	u decreased. Under the constraint of
P<1.0, the SI method calls for very small iteration parameters that lead to unacceptable calculation
times.

5. CONCLUSION

A methodology has been presented for the numerical solution of two-dimensional convection–
diffusion problems for arbitrary solution domains [1]. Use of this methodology was illustrated by
comparison with the benchmark solutions for natural convection in a squeezed cavity and a hot
cylinder in a duct. The DSG method as presented extends the solution of natural convection in
concentric and eccentric horizontal cylindrical annuli. The numerical results with the orthogonal
and non-orthogonal curvilinear co-ordinates were found to be in good agreement with published
experimental results.

The convergence properties of the DGG method were compared with those of the widely used
‘SI’ method for the problem of natural convection in annuli. A GA developed to solve problems of
numerical optimization of calculation time provided a means of making an unbiased comparison
between the DSG and the SI methods. A variety of iteration algorithms were used for solving
Poisson’s equation for pressure correction: the SOR method, the SSOR method, the incomplete
factorization preconditioner method, the CG method, and CG methods with preconditioners. The
best calculation time was achieved with the SOR and the SSOR iteration procedures. The CG
method with the SSOR andMILU0 preconditioners for the solution of Poisson’s pressure-correction
equations did not increase the convergence rate of the SIMPLE-like method. Use of iterative
parameters such as pressure-correction relaxation and internal velocity relaxation realized higher
values both on orthogonal grids and on the strongly non-orthogonal DSG, but the SI method calls
for very small iteration parameters that lead to unacceptable calculation times on the strongly
non-orthogonal grids.

DSG can be treated as a type of overlapping grids, both of which discretize the common
domain (or sub-domain). In the numerical examples, grid boundaries are displaced at a domain
boundary; interfaces between shifted MAC grids are calculated only at this boundary. In the context
of convergence rate with the DSG, we would like to refer to some intuitive reason to improve
the convergence by partitioning the working domain into a fixed collection of subset domains
(the ADI method), according to Forsythe and Wasow [72]: ‘During any linear iterative process,
the error ‖Ek‖ tends to settle into a certain ‘rut’; i.e. if there is a dominant eigenvalues �1, eventually
Ek =c�1k X1 where X1 is the corresponding eigenvalue. For a significant problem, one usually finds
that |�1| is only slightly less than 1, so that ‖Ek‖—is making only very slow progress to zero;
this is a ‘rut’. Now, if at this stage one changes the iterative process, one will ordinary acquire
a new set of eigenvectors. At the moment of change, the vector X will not be an eigenvector of
the new process, and one may expect several steps to take place before ‖Ek‖ settles into a new
rut. Meanwhile, one may hope decreased ‖Ek‖ considerably’. The calculation process on the DSG
comprises sequences of changing of boundary conditions (Dirichlet, Neumann) and calculated
domains (first grid, second grid); these switches, according to the ‘intuitive reason’ of Forsythe
and Wasow lead to a higher convergence rate with the DSG than with the SI method. Use of
DSG is of interest in general domain decomposition methods as, for example, when one of the
sub-domains has a non-orthogonal grid. This represents the next step in implementing DSG in a
domain decomposition method.
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NOMENCLATURE

C1,C2,C3,C4 transformed diffusion coefficients
ev eccentricity along vertical axis (positive upwards)
J Jacobian of the transformation
g matrix transformation
g gravity constant
l length
Nu Nusselt number
p pressure
Pr Prandtl number
Ra Rayleigh number
Re Reynolds number
Ri inner cylinder radius
Ro outer cylinder radius
T temperature
u velocity vector
u,v Cartesian velocity components
U,V contravariant velocity components
u unknown vector in the matrix equation Au=b
x, y Cartesian co-ordinate system
	 angle
� eigenvalue
�, � general curvilinear co-ordinates
� density
 general scalar field
� stream function
� vorticity, relaxation parameter

Superscripts

1, 2 first and second primitive variables fields
′ field correction
u velocity
u,v velocity component

Subscripts

E, P,N , S,W values associated with center of neighbor control volumes
e,n,s,w values associated with control volumes faces
p pressure
x, y, �, � partial derivatives
� two-dimensional domain
� domain boundary
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